
Fierce Fun ©. Private and Confidential

Fiercefun.com

Coding Conventions: 1.03

Please note that these conventions are not optional. Any project not following these conventions

will not be used in production.

Coding conventions are style guidelines for programming. They typically cover:

● Naming and declaration rules for variables and functions.

● Rules for the use of white space, indentation, and comments.

● Programming practices and principles

Fierce Fun primarily uses C# and scripting languages (ActionScript, JavaScript, PHP) so our

coding conventions follow those used primarily in Java/JavaScript standards.

The Importance of Naming

Choosing good names for variables, functions and classes is critical to creating code that is

easy to use and easy to understand. You should always take the time to think about whether

you have chosen the right name for something.

Properly naming and commenting items is one of the most critical task of software projects. At

all times, developers should care about and adhere to this critical task.

Version Control

GitHub

Unity Collaborate

Links

Our conventions are based on the following

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-

conventions C#

https://pear.php.net/manual/en/standards.php (PHP)

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://pear.php.net/manual/en/standards.php

Fierce Fun ©. Private and Confidential

General Coding Practise

At Fierce Fun, we classify code as development and production.

Development Code

Development is what you work on day-to-day. It can be messy at time, undocumented and

buggy. Effectively it is your in-progress work and only you will see it.

Production Code

Production code is what you submit for review on a weekly basis. This code could be used in

the final production build so it should be clean, organised and commented before submitting. It

should be designed to be easily read and understood by another developer. If it is not easily

read and understood, it will not be usable as production code.

Coding Guidelines

Code should not be smelly! Examples of nasty smells are:

• Repeated code

• Big class size

• Big function size

• Deep nesting with if statements

• Long line length

• No or obscure comments

Please read the follow important guidelines to avoid smelly code

https://en.wikipedia.org/wiki/Code_smell

If it smells, we can’t use it….

https://en.wikipedia.org/wiki/Code_smell

Fierce Fun ©. Private and Confidential

Copyright Notice

Include this copyright notice at the top of every file

For code files, use

/**

 * Class: Avatar

 *

 * Description: Class to initialise & update main game player. This class forms the basis for the player

* and enemy data structres

*

* Copyright Fierce Fun Ltd

* Version 1.0

 */

Code without this notice cannot be used.

Fierce Fun ©. Private and Confidential

General Naming Conventions

Class and Method Names

use PascalCasing for class names and method names.

1. public class GameManager

2. {

3. public void ClearScreen()

4. {

5. //...

6. }

7. public void DrawScreen()

8. {

9. //...

10. }

11. }

Variables and Arguments

Use camelCase for identifier names. For example, select myPelican rather than mypelican.

Examples

firstName = "John";

lastName = "Doe";

fullPrice = 99;

Name a file by describing the process or item, such as add-user.

Remember to keep names descriptive.

Abbreviations

Avoid them as a general rule. For example, calculateOptimalValue() is a better method name

than calcOptVal().

Fierce Fun ©. Private and Confidential

Code Layout

Brace Style

Vertically align curly brackets. Braces shall be used for all blocks in the style shown here:
{

code here…
code here...

}

Example:

package samples
{

public class SampleCode
{

public var sampleGreeting:String;

public function sampleFunction()
{

trace(sampleGreeting + " from sampleFunction()");
}

}
}

Member Variable Declaration

Declare all member variables at the top of a class, with static variables at the very top.

1. public class Account

2. {

3. public static string PlayerName;

4. public static decimal Reserves;

5.

6. public string Number {get; set;}

7. public DateTime DateOpened {get; set;}

8. public DateTime DateClosed {get; set;}

9. public decimal Balance {get; set;}

10.

11. // Constructor

12. public Account()

13. {

14. // ...

15. }

16. }

Variables must be prefixed e.g. public, private or protected

Fierce Fun ©. Private and Confidential

Spacing

There should be a 3-line gap between all functions/methods

Fierce Fun ©. Private and Confidential

Commenting

In general, code should be commented prolifically. It should allow an external developer to

understand your code.

What needs to be commented:

• Class/Script Heading

• All member variables

• All functions/methods

• Important lines in a function

Class/Heading comments

This sentence/paragraph describes what the class/script does.

Class Variable/Members

With variable declaration (as there be many), it is ok to comment at the end of the line

Comments inside functions

• Place the comment on a separate line, not at the end of a line of code.

• Begin comment text with an uppercase letter.

Fierce Fun ©. Private and Confidential

Build Numbering

All builds need to use the following sequential numbering system:

1.00 underscore followed by a number sequence

For example:

GameBuild1.00

GameBuild1.02

To note:

● Each new revision is increased by 0.01

● Major updates would be increased by 1 e.g. 1.01 to 2.01

● Avoid special characters such as ~ ! @ # $ % ^ & * () ` ; < > ? , [] { } ' " |

● Do not use spaces. Instead, use underscores between words, e.g. file_name

File Organisation

The FF development directory should be used for all projects. Files should be stored in the

correct folders and new folders should be used to group similar assets.

Asset Naming

Assets (graphics, audio, text, etc) should be named according to the FF Asset Naming

Convention document.

Fierce Fun ©. Private and Confidential

UNITY

C# Coding Conventions

Use the Microsoft standard: https://msdn.microsoft.com/en-us/library/ff926074.aspx

Naming Convention: Scripts and Assets

Project Assets: Logical Folder Structure

Scripts

Organise into folders

https://msdn.microsoft.com/en-us/library/ff926074.aspx

Fierce Fun ©. Private and Confidential

Scripts Names

Managers for groups or systems

Where similar, start with the object name

Script Layout

• All to include Fierce Fun copyright © notice – header comments

• Put public variables first

• All variable should be explicitly declared public or private

